Functional Profile

SOMFY animeo®
LON Sensor Interface WM
Ref. 1860161

Version 1.1
Revision date: 03.05.12
Ref.Nr.: 5108278

Somfy Activites SA
50 Avenue du Nouveau Monde
74300 Cluses
France

www.somfy.com/projects
Table of Content

1. **Document History** ... 4

2. **Node Object – Outside Sensor Box (OSB)** ... 5
 2.1. Functional-Block Details ... 5
 2.2. Network Variables ... 7
 2.2.1. Request Input .. 7
 2.2.2. Status Output ... 9
 2.2.3. File Directory ... 10
 2.3. Configuration Properties ... 11
 2.3.1. Wind Sensor Type ... 11
 2.3.2. Sun Sensor Type .. 12
 2.3.3. Wind Direction Sensor Type .. 12
 2.3.4. DCF Modul Configuration .. 13
 2.3.5. Sensors connected ... 13
 2.3.6. Sun Sensors connected .. 14

3. **Rain** ... 15
 3.1. Functional-Block Details ... 15
 3.2. Network Variables ... 16
 3.2.1. Rain Output .. 16
 3.3. Configuration Properties ... 17
 3.3.1. Max Send Time .. 17

4. **Time** ... 18
 4.1. Functional-Block Details ... 18
 4.2. Network Variables ... 18
 4.2.1. Time Date Output ... 19
 4.3. Configuration Properties ... 20
 4.3.1. Max Send Time .. 20

5. **Wind direction** ... 21
 5.1. Functional-Block Details ... 21
 5.2. Network Variables ... 22
 5.2.1. Wind Direction Output ... 22
 5.3. Configuration Properties ... 23
 5.3.1. Max Send Time .. 23
 5.3.2. Min Send Time .. 23
 5.3.3. Send On Delta Value ... 24

6. **Outside Temperature** .. 25
 6.1. Functional-Block Details ... 25
 6.2. Network Variables ... 26
 6.2.1. Outdoor Temperature Output .. 26
 6.3. Configuration Properties ... 27
 6.3.1. Max Send Time .. 27
 6.3.2. Min Send Time .. 27
 6.3.3. Send On Delta Value ... 28
Functional Profile LON Sensor Interface

7. Sun
 7.1. Functional-Block Details
 7.2. Network Variables
 7.2.1. Sun Sensor Output [x]
 7.3. Configuration Properties
 7.3.1. Max Send Time
 7.3.2. Min Send Time
 7.3.3. Send On Delta Value

8. Wind
 8.1. Functional-Block Details
 8.2. Network Variables
 8.2.1. Wind Speed Output [x]
 8.3. Configuration Properties
 8.3.1. Max Send Time
 8.3.2. Min Send Time
 8.3.3. Send On Delta Value

9. Analog Sensor
 9.1. Functional-Block Details
 9.2. Network Variables
 9.2.1. Analog Sensor Output
 9.3. Configuration Properties
 9.3.1. Type Of Analog Sensor
 9.3.1.1. Global Radiation As Analog Sensor
 9.3.1.2. CO2 As Analog Sensor
 9.3.1.3. Temperature As Analog Sensor
 9.3.1.4. Brightness As Analog Sensor
 9.3.2. Max Send Time
 9.3.3. Min Send Time
 9.3.4. Send On Analog Sensor Delta
 9.3.4.1. Send On Power Delta
 9.3.4.2. Send On Percent (CO2) Delta
 9.3.4.3. Send On Temperature Delta
 9.3.4.4. Send On Brightness Delta
 9.3.5. Analog Sensor Gain
 9.3.6. Analog Sensor Offset
 9.3.6.1. Analog Sensor Offset Power
 9.3.6.2. Analog Sensor Offset CO2
 9.3.6.3. Analog Sensor Offset Temperature
 9.3.6.4. Analog Sensor Offset Brightness
1. Document History

<table>
<thead>
<tr>
<th>version</th>
<th>Modification</th>
<th>reason</th>
<th>validity date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First Version</td>
<td></td>
<td>23.10.2009</td>
</tr>
<tr>
<td>1.1</td>
<td>Update</td>
<td></td>
<td>16.12.2009</td>
</tr>
</tbody>
</table>
2. Node Object #0000– Outside Sensor Box (OSB)

2.1. Functional-Block Details

OSB node

Network Variables

- nv0
 - nviRequest
 - SNVT_obj_request

- nv1
 - nvoStatus
 - SNVT_obj_status

- nv5
 - nvoFileDirection
 - SNVT_address

Configuration Properties

- nci
 - nciWindSens1
 - nciWindSens2
 - nciSunSensors
 - nciWindDirSens
 - nciDcfUsed
 - nciSensUsed
 - nciSunSensUsed
Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nviRequest</td>
<td>SNVT_obj_request</td>
<td>92</td>
<td>Requests a particular mode for a particular functional block in the device</td>
</tr>
<tr>
<td>2(M)</td>
<td>nvoStatus</td>
<td>SNVT_obj_status</td>
<td>93</td>
<td>Reports the status of the requested functional block in the device</td>
</tr>
<tr>
<td>5(O)</td>
<td>nvoFileDirectory</td>
<td>SNVT_address</td>
<td>114</td>
<td>Address for the file directory containing descriptors for configuration files</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT/UCPT Name</th>
<th>SCPT/UCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>UCPTwindSens1</td>
<td>nciWindSens1</td>
<td>Entire Device</td>
<td>Defines the type of connected wind sensor 1</td>
</tr>
<tr>
<td>(O)</td>
<td>UCPTwindSens2</td>
<td>nciWindSens2</td>
<td>Entire Device</td>
<td>Defines the type of connected wind sensor 2</td>
</tr>
<tr>
<td>(O)</td>
<td>UCPTsunSensors</td>
<td>nciSunSensors</td>
<td>Entire Device</td>
<td>Defines the type of connected sun sensor(s)</td>
</tr>
<tr>
<td>(O)</td>
<td>UCPTwindDirSens</td>
<td>nciWindDirSens</td>
<td>Entire Device</td>
<td>Defines the type of connected wind direction sensor</td>
</tr>
<tr>
<td>(O)</td>
<td>UCPTdcfUsed</td>
<td>nciDcfUsed</td>
<td>Entire Device</td>
<td>Defines whether DCF-time/date signal shall be used or not</td>
</tr>
<tr>
<td>(O)</td>
<td>UCPTsensUsed</td>
<td>nciSensUsed</td>
<td>Entire Device</td>
<td>Defines which sensors are connected and used at the Outside Sensor Box and at the 3 Analog Inputs</td>
</tr>
<tr>
<td>(O)</td>
<td>UCPTsunSensUsed</td>
<td>nciSunSensUsed</td>
<td>Entire Device</td>
<td>Defines which sun sensors are connected and used at the Outside Sensor Box</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.

** List of NVs to which this configuration property applies.
An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented.
An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.
2.2. Network Variables

2.2.1. Request Input

network input SNVT_obj_request nviRequest;

This input network variable provides the mechanism to request an operation or a mode for a functional block within a device. For a listing of all possible request codes, and for the meaning of the function codes for `SNVT_obj_request`, see the SNVT Master List.

A request consists of an object ID (the `object_id` field) and an object request (the `object_request` field). The object ID is the functional block index for a functional block on the device. If a device has a Node Object functional block, its functional block index must be zero. The remaining functional blocks are numbered sequentially, starting with one.

The object request specifies a request function for the functional block identified by the object ID. The `object_request_t` definition in the SNVT Master List defines the available request functions; the following requests are the only mandatory request functions:

RQ_NORMAL
RQ_UPDATE_STATUS
RQ_REPORT_MASK

If an `nviRequest` update specifies an unsupported request function, the `nvoStatus` output network variable must be updated with the `invalid request` field set to one. Support for the object-disable, self-test, override, and alarm reporting request functions is not required.

The request functions are defined as follows:

RQ_NORMAL If the specified functional block was in the disabled or overridden state, this request cancels that state and returns the functional block to normal operation. If the functional block was already in the normal state, a request to enter the normal state is not an error. After device reset, the state of functional blocks on the device is application-specific. An RQ_NORMAL request that specifies the Node Object functional block index is a request for all functional blocks in the device to leave the disabled and overridden states.
RQ_UPDATE_STATUS Requests the status of the specified functional block to be sent to the `nvoStatus` output network variable. The state of the functional block is unchanged. A **RQ.UPDATE_STATUS** request that specifies the Node Object functional block is a request for the status of the device and all functional blocks on the device. The status bits of the Node Object (with the exception of `invalid_request` and `invalid_id`) are defined to be the inclusive-OR of the status bits of all the other functional blocks in the device; with the possible addition of error conditions and other conditions attributed to the device as a whole, rather than to any individual functional block. For example, if `comm_failure` is supported for the Node Object, then it should be set when reporting the Node Object functional block status whenever any of the functional blocks in the device reports communications failure, as well as when there is a communications failure at the device level.

RQ_REPORT_MASK Requests a status mask reporting the status bits that are supported by the specified functional block to be sent to the `nvoStatus` output network variable. A one bit in the status mask means that the device may set the corresponding bit in the object status when the condition defined for that bit occurs. A zero bit in the status mask means that the bit is never set by the device. For example, if object disable (`RQ.DISABLED`) is not supported for a functional block, the `disabled` bit in the status mask must be zero for that functional block. If self-test (`RQ_SELF_TEST`) is not supported for a functional block, the `fail_self_test` and `self_test_in_progress` bits in the status mask must be zero for that functional block. If alarm reporting (`RQ_UPDATE_ALARM` or asynchronous notification) is not supported, the `in_alarm` bit in the status mask must be zero for that functional block. A **RQ_REPORT_MASK** request that specifies the Node Object functional block requests a status mask that is the inclusive-OR of supported status bits for the device and all functional blocks on the device.

Valid Range

The valid range is any value within the defined limits of `SNVT_obj_request`.

Default Value

The default value is undefined.

Configuration Considerations

None specified.
2.2.2. Status Output

network output SNVT_obj_status nvoStatus;

This output network variable reports the status for any functional block on a device. It is also used to report the status of the entire device and all functional blocks on the device.

A status update consists of an object ID (the object_id field) and multiple status fields. The object ID is the functional block index as described under nviRequest. If the object ID is zero, the status of the device itself and all functional blocks on the device are reported.

The status fields are one-bit bitfields. The only required status fields are the report_mask, invalid_id and invalid_request fields; all other status fields are optional. If an error condition is active for a reported functional block, the out_of_limits field is set to one. Following is a description of the required status fields. See the SNVT Master List for a description of the optional fields.

invalid_request Set to one if an unsupported request code (RQ_xxx) is received on the nviRequest input network variable.

invalid_id Set to one if a request is received for a functional block index that is not defined in the device. No further checking of the request code is required when set to one.

report_mask Set to one if a RQ_REPORT_MASK request is received by the nviRequest input network variable, and the nvoStatus output network variable is set to contain the status mask. The status mask is a nvoStatus value that describes the status bits that are supported beyond the three mandatory status bits. The status mask consists of all fields in the nvoStatus output network variable, with the exception of the report_mask, invalid_id and invalid_request fields. A one bit in the mask means that the functional block may set the corresponding bit in the nvoStatus output network variable when the condition defined for that bit occurs. A zero bit means that the functional block may never set the bit.

Valid Range

The valid range is any value within the defined limits of SNVT_obj_status with the exception that the report_mask, invalid_id and invalid_request fields must be set to one.

Default Value

The default value must be the actual status of the device for all supported fields. All other fields must be set to zero. The application must update the status such that a polling of the status, following the request, returns a reasonable value.
Configuration Considerations

The optional \texttt{nciMaxStsSendT} configuration property specifies a heartbeat for sending this network variable. If the CP is not implemented, or is implemented and is set to zero or the invalid value, a heartbeat is not provided.

When Transmitted

The output variable is transmitted when either of the following conditions occurs:

A request is received by the \texttt{nviRequest} input network variable.

The heartbeat interval specified by the optional \texttt{nciMaxStsSendT} CP expires.

When the heartbeat timer expires, the status of each functional block (including the Node Object functional block) is returned sequentially in round-robin fashion—one object status per expiration of the timer.

Default Service Type

The default service type is acknowledged.

2.2.3. File Directory

\begin{verbatim}
network output SNVT_address nvoFileDirectory;
\end{verbatim}

This output network variable reports the starting address of the configuration-file directory on a Neuron hosted device. It is used when configuration properties are implemented within configuration files accessed by ANSI/EIA/CEA-709.1 Read Memory and Write Memory network-management messages. If an \texttt{nvoFileDirectory} output network variable is implemented on a device, all files on the device must be accessible using network management read/write messages. For more details, see \textit{Configuration Properties} within the LONMARK Application-Layer Interoperability Guidelines.

This output network variable must be implemented in the Node Object functional block if the device supports the LONWORKS FTP with random and sequential access method. It must not be implemented if the device supports the LONWORKS FTP with sequential access or the direct memory read/write access methods for data files.

Valid Range

The valid range for the file directory address is any value within the user-data memory space of a Neuron Chip or Smart Transceiver.

Default Value

The typical default value is FS_NUL.
Configuration Considerations

The Node Object implements the file-request and file-position network variables as inputs, and the file-status network variable as an output. The device can therefore act as the Sender or the Receiver in a file transfer, but it cannot act as the Initiator of a file transfer using these network variables.

When Transmitted

The output variable is transmitted when either of the following conditions occurs:

- During file transfer
- When polled

Default Service Type

The default service type is unspecified. Network tools may wish to poll this network variable for values.

2.3. **Configuration Properties**

2.3.1. **Wind Sensor Type**

```plaintext
network input config UCPTwindSens nciWindSens[x];
```

This input configuration property sets the type of used wind sensor which is connected to the wind sensor input 1 and or wind sensor input 2

Valid Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>MEM_NULL</td>
<td>Not defined</td>
</tr>
<tr>
<td>0</td>
<td>NO_SENSOR</td>
<td>No Sensor</td>
</tr>
<tr>
<td>17</td>
<td>WIND_BIG_HEATED</td>
<td>Heated Wind Sensor (Ref. 9140180)</td>
</tr>
<tr>
<td>18</td>
<td>WIND_SMALL</td>
<td>Wind Sensor (Ref. 9127932)</td>
</tr>
<tr>
<td>32</td>
<td>WIND_BIG</td>
<td>Wind Sensor (not heated) (Ref. 9001608)</td>
</tr>
<tr>
<td>48</td>
<td>WIND_THIES</td>
<td>Wind Sensor (Thies)</td>
</tr>
</tbody>
</table>

Default Value

17 = Heated Wind Sensor (Ref. 9140180)

SCPT Reference

UCPTwindSens[x]
2.3.2. Sun Sensor Type

network input config UCPTsunSensors nciSunSensors;

This input configuration property sets the type of used sun sensor which is connected to the sun sensor input 1, input2, input3, input4, input 5, input6, input7 and input8.

Valid Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>MEM_NULL</td>
<td>Not defined</td>
</tr>
<tr>
<td>16</td>
<td>SOMFY</td>
<td>SOMFY sun sensor type (Ref. 9050100)</td>
</tr>
</tbody>
</table>

Default Value

16 = SOMFY sun sensor type (Ref. 9050100)

SCPT Reference

UCPTsunSensors

2.3.3. Wind Direction Sensor Type

network input config UCPTwindDirSens nciWindDirSens;

This input configuration property sets the type of used wind sensor which is connected to the wind direction sensor.

Valid Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>MEM_NULL</td>
<td>Not defined</td>
</tr>
<tr>
<td>0</td>
<td>NO_WINDDIRSENSOR</td>
<td>No Sensor</td>
</tr>
<tr>
<td>32</td>
<td>WINDDIR_SOMFY</td>
<td>Wind Direction Sensor (SOMFY new Ref.9013807 or old Ref.9001609)</td>
</tr>
<tr>
<td>48</td>
<td>WINDDIR_THIES</td>
<td>Wind Direction Sensor (Thies)</td>
</tr>
</tbody>
</table>

Default Value

32 = Wind Direction Sensor (SOMFY new Ref.9013807 or old Ref.9001609)

SCPT Reference

UCPTwindDirSens
2.3.4. **DCF Modul Configuration**

```c
network input config UCPTdcfUsed nciDcfUsed;
```

This input configuration property sets the usage of a DCF Receiver which is plugged in at the Outside Sensor Box.

Valid Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>MEM_NULL</td>
<td>Not defined</td>
</tr>
<tr>
<td>0</td>
<td>NOSENSOR</td>
<td>No Sensor</td>
</tr>
<tr>
<td>16</td>
<td>DCF_SOMFY</td>
<td>DCF Receiver (Ref.9001612)</td>
</tr>
</tbody>
</table>

Default Value

16 = DCF Receiver (Ref.9001612)

SCPT Reference

UCPTdcfUsed

2.3.5. **Sensors connected**

```c
network input config UCPTsensUsed1 nciSensUsed;
```

This input configuration property defines which sensors are connected and used at the Outside Sensor Box and at the Analog Inputs 1 to 3. First bit sets the Wind Sensor_1, second Wind Sensor_2, third Wind Direction Sensor, fourth Temperature, fifth Rain, sixth AnalogSensorOut_1, seventh AnalogSensorOut_2 and eighth AnalogSensorOut_3.

Valid Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NOSENSOR</td>
<td>Sensor not connected/ not used</td>
</tr>
<tr>
<td>1</td>
<td>SENSOR</td>
<td>Sensor connected/used</td>
</tr>
</tbody>
</table>

Default Value

0,0,0,0,0,0,0,1 (extSens3=NO, extSens2=NO; extSens1=NO; rain=NO; temp=NO; windDir=NO, wind2=NO, wind1=YES,)

SCPT Reference

UCPTsensUsed1
2.3.6. **Sun Sensors connected**

network input config UCPTsunSensUsed nciSunSensUsed;

This input configuration property defines which Sun Sensors are connected and used at the Outside Sensor Box.

Valid Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NO_SENSOR</td>
<td>Sensor not connected/not used</td>
</tr>
<tr>
<td>1</td>
<td>SENSOR</td>
<td>Sensor connected/used</td>
</tr>
</tbody>
</table>

Default Value

0,0,0,0,0,0,0,1 (Sun_8=NO, Sun_7=NO, Sun_6=NO, Sun_5=NO, Sun_4=NO, Sun_3=NO, Sun_2=NO, sun_1=YES)

SCPT Reference

UCPTsunSensorUsed
3. Rain Sensor #1051

3.1. Functional-Block Details

Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nvoRain</td>
<td>SNVT_switch</td>
<td>95</td>
<td>Rain sensor output</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT Name</th>
<th>SCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>SCPTmaxSendTime</td>
<td>49</td>
<td>nv1</td>
<td>Maximum period of time that expires before the object will automatically update NV</td>
</tr>
<tr>
<td></td>
<td>nciMaxSendTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec(107)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2. Network Variables

3.2.1. Rain Output

network input SNVT_switch nvoRain;

This output network variable is used to send rain (precipitation) sensor influence on the controller.

Valid Range

For details refer to the *LONMARK SNVT Master List*, versions 13.00 and later.

<table>
<thead>
<tr>
<th>nviRain.state</th>
<th>nviRain.value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>no rain</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>no rain</td>
</tr>
<tr>
<td>1</td>
<td>1..200</td>
<td>rain level</td>
</tr>
<tr>
<td>0xFF</td>
<td>not considered</td>
<td>INVALID</td>
</tr>
</tbody>
</table>

Default Value

nviRain.value = 0
nviRain.state = 0xFF

Configuration Considerations

Behaviour depends on the values of the following properties:

SCPTmaxSendTime
3.3. Configuration Properties

3.3.1. Max Send Time

network input config SNVT_time_sec nciMaxSendTime;

This input configuration property sets the maximum period of time that can expire before the Object will automatically (cyclically) update one of the following network variable:

nv1 – nvoRain

Valid Range

0 … 6553.5 seconds (only complete seconds will be processed)

Default Value

60.0 seconds.

SCPT Reference

Remark: Since the LonMark Standard #1051 uses the wrong reference (#52) this CP appears as SCPTminSendTime.

SCPTmaxSendTime (49)
4. Real Time Keeper #3300

4.1. Functional-Block Details

Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nv0TimeDate</td>
<td>SNVT_time_stamp</td>
<td>84</td>
<td>Actual time and date output</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT Name</th>
<th>SCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>SCPTmaxSendTime</td>
<td>49</td>
<td>nv1</td>
<td>Maximum period of time that expires before the object will automatically update NV</td>
</tr>
<tr>
<td></td>
<td>nciMaxSendTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec(107)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.

** List of NVs to which this configuration property applies.

An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented.
An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.
4.2. Network Variables

4.2.1. Time Date Output

```c
network output SNVT_time_stamp  nvoTimeDate;
```

This output network variable reports time and date.

Valid Range
- Year: 0 .. 3000
- Month: 0 .. 12
- Day: 0 .. 31
- Hour: 0 .. 23
- Minute: 0 .. 59
- Second: 0 .. 59 (Resolution 1)

Default Value
- Year: 2009
- Month: 01
- Day: 01
- Hour: 12
- Minute: 00
- Second: 00

Configuration Considerations

Behaviour depends on the values of the following properties:
- SCPTmaxSendTime
4.3. Configuration Properties

4.3.1. Max Send Time

```c
network input config SNVT_time_sec nciMaxSendTime;
```

This input configuration property sets the maximum period of time that can expire before the Object will automatically (cyclically) update one of the following network variable:

`nv1 – nvoTimeDate`

Valid Range

0 … 6553.5 seconds (only complete seconds will be processed)

Default Value

3600.0 seconds.

SCPT Reference

SCPTmaxSendTime (49)
5. Wind direction #20006

5.1. Functional-Block Details

![WindDir Sensor Diagram]

Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nvoWindDir</td>
<td>SNVT_angle_deg</td>
<td>104</td>
<td>Wind direction sensor output</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional
Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O)</th>
<th>SCPT Name</th>
<th>SCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>SCPTmaxSendTime</td>
<td>49</td>
<td>nv1</td>
<td>Maximum period of time that expires before the object will automatically update NV</td>
</tr>
<tr>
<td></td>
<td>nciMaxSendTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec(107)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>SCPTminSendTime</td>
<td>52</td>
<td>nv1</td>
<td>Minimum period of time that expires before the object will automatically update NV</td>
</tr>
<tr>
<td></td>
<td>nciMinSendTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec(107)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>SCPTsndDelta</td>
<td>27</td>
<td>nv1</td>
<td>Sets the minimum change required to force transmission of the output value</td>
</tr>
<tr>
<td></td>
<td>nciSndDelta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_angle_deg(104)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional
It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.

** List of NVs to which this configuration property applies.
An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented. An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.

5.2. Network Variables

5.2.1. Wind Direction Output

```c
network output SNVT_Speed nvoWindDir;
```

This output network variable reports wind direction with a range from -359.98 …360.00° (Degree)

Valid Range

-359.98…360.00° (Resolution 0.01°)

Default Value

180°.

Configuration Considerations

Behaviour depends on the values of the following properties:

- SCPTmaxSendTime
- SCPTminSendTime
- SCPTsndDelta
5.3. Configuration Properties

5.3.1. Max Send Time

```
network input config SNVT_time_sec nciMaxSendTime;
```

This input configuration property sets the maximum period of time that can expire before the Object will automatically (cyclically) update one of the following network variable:

- nv1 – nvoWindDir

Valid Range

0 … 6553.5 seconds (only complete seconds will be processed)

Default Value

60.0 seconds.

SCPT Reference

SCPTmaxSendTime (49)

5.3.2. Min Send Time

```
network input config SNVT_time_sec nciMinSendTime;
```

This input configuration property sets the minimum period of time that must expire before the Object will automatically (cyclically) update one of the following network variable:

- nv1 – nvoWindDir

Valid Range

0 …. 6553.5 seconds (only complete seconds will be processed)

Default Value

10.0 seconds.

SCPT Reference

SCPTminSendTime (52)
5.3.3. Send On Delta Value

network input config SNVT_angle_deg nciSndDelta;

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update the following network variable:

- nvl – nvoOutdoorTemp

Valid Range

-273.17 ... 327.66°C (Resolution 0.01°C)

Default Value

90°C (Degree Celsius)

SCPT Reference

SCPTsndDelta (26)
6. Outside Temperature Sensor #1040

6.1. Functional-Block Details

![Diagram of OutTemp Sensor]

Network Variables

- nv1
 - nvoOutdoorTemp
 - SNVT_temp_p

Configuration Properties

- nci
 - nciMaxSendTime
- nci
 - nciMinSendTime
- nci
 - nciSndDelta

Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nvoOutdoorTemp</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>Outdoor air temperature output</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional
Functional Profile LON Sensor Interface

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT Name</th>
<th>SCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>SCPTmaxSendTime nciMaxSendTime SNVT_time_sec(107)</td>
<td>49 nv1</td>
<td></td>
<td>Maximum period of time that expires before the object will automatically update NV</td>
</tr>
<tr>
<td>(M)</td>
<td>SCPTminSendTime nciMinSendTime SNVT_time_sec(107)</td>
<td>52 nv1</td>
<td></td>
<td>Minimum period of time that expires before the object will automatically update NV</td>
</tr>
<tr>
<td>(M)</td>
<td>SCPTminDeltaTemp nciMinDelta SNVT_temp_p (105)</td>
<td>64 nv1</td>
<td></td>
<td>Sets the minimum change required to force transmission of the output value</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional
It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.

** List of NVs to which this configuration property applies.
An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented. An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.

6.2. Network Variables

6.2.1. Outdoor Temperature Output

```c
network output SNVT_temp_p nvoOutdoorTemp;
```

This output network variable reports outdoor Temperature with a range from -273.17…327.66°C (Degree Celsius).

Valid Range

-273.17…327.66°C (Resolution 0.01°C)

Default Value

0 °C.

Configuration Considerations

Behaviour depends on the values of the following properties:

- SCPTmaxSendTime
- SCPTminSendTime
- SCPTminDeltaTemp
6.3. Configuration Properties

6.3.1. Max Send Time

network input config SNVT_time_sec nciMaxSendTime;

This input configuration property sets the maximum period of time that can expire before the
Object will automatically (cyclically) update the following network variable:

- nv1 – nvoOutdoorTemp

Valid Range
0 … 6553.5 seconds (only complete seconds will be processed)

Default Value
60.0 seconds.

SCPT Reference
SCPTmaxSendTime (49)

6.3.2. Min Send Time

network input config SNVT_time_sec nciMinSendTime;

This input configuration property sets the minimum period of time that must expire before the
Object will automatically (cyclically) update the following network variable:

- nv1 – nvoOutdoorTemp

Valid Range
0 …. 6553.5 seconds (only complete seconds will be processed)

Default Value
10.0 seconds.

SCPT Reference
SCPTminSendTime (52)
6.3.3. **Send On Delta Value**

```
network input config SNVT_temp_p nciMinDelta;
```

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update the following network variable:

- `nv1 – nvoOutdoorTemp`

Valid Range

-273.17 .. 327.66°C (Resolution 0.01°C)

Default Value

5°C (Degree Celsius)

SCPT Reference

SCPTminDeltaTemp (64)
7. Sun Sensors #1010

7.1. Functional-Block Details

Sun sensor

Network Variables

- nv1: nvoSunLux_1
- nv2: nvoSunLux_2
- nv3: nvoSunLux_3
- nv4: nvoSunLux_4
- nv5: nvoSunLux_5
- nv6: nvoSunLux_6
- nv7: nvoSunLux_7
- nv8: nvoSunLux_8, SNVT_Lux

Configuration Properties

- nci: nciMaxSendTime
- nci: nciMinSendTime
- nci: nciSndDelta
Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nvoSunLux_1</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>2(M)</td>
<td>nvoSunLux_2</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>3(M)</td>
<td>nvoSunLux_3</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>4(M)</td>
<td>nvoSunLux_4</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>5(M)</td>
<td>nvoSunLux_5</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>6(M)</td>
<td>nvoSunLux_6</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>7(M)</td>
<td>nvoSunLux_7</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
<tr>
<td>8(M)</td>
<td>nvoSunLux_8</td>
<td>SNVT_lux</td>
<td>79</td>
<td>Sun (outdoor) brightness output</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT Name</th>
<th>SCPT/UCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>SCPTmaxSendTime</td>
<td></td>
<td>nv1, nv2, nv3,</td>
<td>Maximum period of time that expires before the object will automatically</td>
</tr>
<tr>
<td></td>
<td>nciMaxSendTime</td>
<td></td>
<td>nv4, nv5, nv6,</td>
<td>update NV</td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec(107)</td>
<td>49</td>
<td>nv7, nv8</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>SCPTminSendTime</td>
<td></td>
<td>nv1, nv2, nv3,</td>
<td>Minimum period of time that expires before the object will automatically</td>
</tr>
<tr>
<td></td>
<td>nciMinSendTime</td>
<td></td>
<td>nv4, nv5, nv6,</td>
<td>update NV</td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec(107)</td>
<td>52</td>
<td>nv7, nv8</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>SCPTsndDelta</td>
<td></td>
<td>nv1, nv2, nv3,</td>
<td>Sets the minimum brightness change required to force transmission of the</td>
</tr>
<tr>
<td></td>
<td>nciSndDelta</td>
<td></td>
<td>nv4, nv5, nv6,</td>
<td>output value</td>
</tr>
<tr>
<td></td>
<td>SNVT_lux (79)</td>
<td>27</td>
<td>nv7, nv8</td>
<td></td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.

** List of NVs to which this configuration property applies.

An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented.

An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.
7.2. **Network Variables**

7.2.1. **Sun Sensor Output [x]**

 network output SNVT_lux nvoSunLux_[x];

This output network variable reports sun (outdoor) brightness with a range from 0…65335 lx.

Valid Range

0 … 65335 lx (resolution 1 lx)

Default Value

0 lx.(Lux)

Configuration Considerations

Behaviour depends on the values of the following properties:

- SCPTmaxSendTime
- SCPTminSendTime
- SCPTsndDelta

7.3. **Configuration Properties**

7.3.1. **Max Send Time**

 network input config SNVT_time_sec nciMaxSendTime;

This input configuration property sets the maximum period of time that can expire before the Object will automatically (cyclically) update one of the following network variables:

- nv1 – nvoSunLux_1
- nv2 – nvoSunLux_2
- nv3 – nvoSunLux_3
- nv4 – nvoSunLux_4
- nv5 – nvoSunLux_5
- nv6 – nvoSunLux_6
- nv7 – nvoSunLux_7
- nv8 – nvoSunLux_8
Valid Range
0 … 6553.5 seconds (only complete seconds will be processed)

Default Value
60.0 seconds.

SCPT Reference
SCP TmaxSendTime (49)

7.3.2. Min Send Time

network input config SNVT_time_sec nciMinSendTime;

This input configuration property sets the minimum period of time that must expire before the Object will automatically (cyclically) update one of the following network variables:

- nv1 – nvoSunLux_1
- nv2 – nvoSunLux_2
- nv3 – nvoSunLux_3
- nv4 – nvoSunLux_4
- nv5 – nvoSunLux_5
- nv6 – nvoSunLux_6
- nv7 – nvoSunLux_7
- nv8 – nvoSunLux_8

Valid Range
0 … 6553.5 seconds (only complete seconds will be processed)

Default Value
10.0 seconds.

SCPT Reference
SCPT minSendTime (52)
7.3.3. **Send On Delta Value**

```c
network input config SNVT_lux nciSndDelta;
```

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update one of the following network variables:

- `nv1` – `nvoSunLux_1`
- `nv2` – `nvoSunLux_2`
- `nv3` – `nvoSunLux_3`
- `nv4` – `nvoSunLux_4`
- `nv5` – `nvoSunLux_5`
- `nv6` – `nvoSunLux_6`
- `nv7` – `nvoSunLux_7`
- `nv8` – `nvoSunLux_8`

Valid Range

0 … 65335 lx.

Default Value

4000 lx.(Lux).

SCPT Reference

`SCPTsndDelta (27)`
8. Wind Sensors #20002

8.1. Functional-Block Details

![Diagram of Wind Speed Sensor]

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nvoWindSpeed_1</td>
<td>SNVT_speed</td>
<td>34</td>
<td>Wind speed sensor output</td>
</tr>
<tr>
<td>2(M)</td>
<td>nvoWindSpeed_2</td>
<td>SNVT_speed</td>
<td>34</td>
<td>Wind speed sensor output</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 1 SNVT Details
Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT Name</th>
<th>SCPT/UCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
</table>
| (M) | SCPTmaxSendTime
 nciMaxSendTime
 SNVT_time_sec (107) | 49 | nv1, nv2 | Maximum period of time that expires before the object will automatically update NV |
| (M) | SCPTminSendTime
 nciMinSendTime
 SNVT_time_sec (107) | 52 | nv1, nv2 | Minimum period of time that expires before the object will automatically update NV |
| (M) | UCPTsndDeltaWindSpeed
 nciSndDelta
 SNVT_speed (34) | #10 | nv1, nv2 | Sets the minimum speed change required to force transmission of the output value |

* M = mandatory, O = optional
 It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.
 ** List of NVs to which this configuration property applies.
 An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented.
 An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.

8.2. Network Variables

8.2.1. Wind Speed Output [x]

```plaintext
network output SNVT_speed nvoWindSpeed_[x];
```

This output network variable reports wind speed with a range from 0…6533.5m/s.

Valid Range

0 … 6533.5 m/s (Resolution 0.1m/s)

Default Value

0 m/s.

Configuration Considerations

Behaviour depends on the values of the following properties:

- SCPTmaxSendTime
- SCPTminSendTime
- SCPTsndDelta
8.3. Configuration Properties

8.3.1. Max Send Time

network input config SNVT_time_sec nciMaxSendTime;

This input configuration property sets the maximum period of time that can expire before the
Object will automatically (cyclically) update one of the following network variables:

- nv1 – nvoWindSpeed_1
- nv2 – nvoWindSpeed_2

Valid Range
0 … 6553.5 seconds (only complete seconds will be processed)

Default Value
60.0 seconds.

SCPT Reference
SCPTmaxSendTime (49)

8.3.2. Min Send Time

network input config SNVT_time_sec nciMinSendTime;

This input configuration property sets the minimum period of time that must expire before the
Object will automatically (cyclically) update one of the following network variables:

- nv1 – nvoWindSpeed_1
- nv2 – nvoWindSpeed_2

Valid Range
0 … 6553.5 seconds (only complete seconds will be processed)

Default Value
10.0 seconds.

SCPT Reference
SCPTminSendTime (52)
8.3.3. Send On Delta Value

```c
network input config SNVT_speed nciSndDelta;
```

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update one of the following network variables:

- `nv1` – `nvoWindSpeed_1`
- `nv2` – `nvoWindSpeed_2`

Valid Range

0 … 6533,5 m/s (Resolution 1 m/s)

Default Value

1,4 m/s.

SCPT Reference

SCPTsndDelta (27)
9. Analog Sensor #0001

9.1. Functional-Block Details

* The Functional Block “Analog Sensor” exists 3 times at the animeo LON Sensor Interface. Each could be set individually and separately from the others.
Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(M)</td>
<td>nvoAnalogSens_x</td>
<td>changeable</td>
<td>Value of used Analog sensor</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>(M/O) **</th>
<th>SCPT Name</th>
<th>SCPT Index</th>
<th>Associated NVs**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>SCPTnvType</td>
<td></td>
<td>nv1</td>
<td>Defines used type of Analog sensor (Global Radiation, CO2, Temperature or Brightness)</td>
</tr>
<tr>
<td></td>
<td>nciNetworkType</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_nv_type (166)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>SCPTmaxSendTime</td>
<td>49</td>
<td>nv1</td>
<td>Maximum period of time that expires before the object will automatically update the NV</td>
</tr>
<tr>
<td></td>
<td>nciMaxSendTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec (107)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>SCPTminSendTime</td>
<td>52</td>
<td>nv1</td>
<td>Minimum period of time that expires before the object will automatically update the NV</td>
</tr>
<tr>
<td></td>
<td>nciMinSendTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec (107)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>SCPTsndDelta</td>
<td>27</td>
<td>nv1</td>
<td>Sets the change in value that must result before the Object updates the NV</td>
</tr>
<tr>
<td></td>
<td>nciSndDelta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT inherited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>SCPTgain</td>
<td>31</td>
<td>nv1</td>
<td>Defines the gain of nvoAnaolgSensorOut</td>
</tr>
<tr>
<td></td>
<td>nciGain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_multidiv (91)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>SCPToffset</td>
<td>26</td>
<td>nv1</td>
<td>Defines the offset of nvoAnaolgSensorOut</td>
</tr>
<tr>
<td></td>
<td>nciOffset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT inherited</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

It should be mandatory for CPs that mandatory for an NV that is also mandatory. This is also valuable for CPs that applies to the Entire Functional Block.

** List of NVs to which this configuration property applies.

An “(M)” means that the CP is mandatory if the NV (to which it applies) is implemented. An “(O)” means that the CP is optional if the NV (to which it applies) is implemented.

9.2. Network Variables

9.2.1. Analog Sensor Output x

```c
network output SNVT(SCPTnvType) nvoAnalogSens_x;
```

This output network variable reports the value of the sensor which is used (Global radiation, CO2, Temperature or Brightness).
Valid Range
Depends on selected NV-type, raw 0 … FFFF

Default Value
0

Configuration Considerations
Behaviour depends on the values of the following properties:
- SCPTnvType
- SCPTmaxSendTime
- SCPTminSendTime
- SCPTsndDelta
- SCPTgain
- SCPToffset
9.3. Configuration Properties

9.3.1. Type Of Analog Sensor

```
network input config SCPTnvType nciNvType;
```

Valid Range

<table>
<thead>
<tr>
<th>nvoAnalogSensorOut</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNVT_power</td>
<td>Global Radiation</td>
</tr>
<tr>
<td>SNVT_lev_percent</td>
<td>CO2</td>
</tr>
<tr>
<td>SNVT_temp_p</td>
<td>Temperature</td>
</tr>
<tr>
<td>SNVT_lux</td>
<td>Brightness</td>
</tr>
</tbody>
</table>

Default Value

3 = Temperature

SCPT Reference

SCPTnvType (254)

9.3.1.1. Global Radiation As Analog Sensor

```
network input config SCPTnvType nciNetworkType = SNVT_power;
```

This input configuration property sets the global radiation value into watt (W) at the following network variables:

- `nv1 = nvoAnalogSensorOut_x`

Valid Range of Analog Sensor Output

0.0 … 6553.5W (Resolution 0.1W)

Default Value of Analog Sensor Output

0 W (Watt)
9.3.1.2. CO2 As Analog Sensor

network input config SCPTnvType nciNetworkType = SNVT_lev_percent;

This input configuration property sets the carbon dioxide (CO²) value into parts-per-million (ppm) at the following network variables:

- nv1 – nvoAnalogSensorOut_x

Valid Range of Analog Sensor Output
-163.840 … 163.830 ppm (Resolution 0.001ppm)

Default Value of Analog Sensor Output
0 ppm (parts-per-million)

9.3.1.3. Temperature As Analog Sensor

network input config SCPTnvType nciNetworkType = SNVT_temp_p;

This input configuration property sets the temperature value into degree Celsius (°C) at the following network variables:

- nv1 – nvoAnalogSensorOut_x

Valid Range of Analog Sensor Output
-273.17 … 327.66°C (Resolution 0.01°C)

Default Value of Analog Sensor Output
0 °C (Degree Celsius)

9.3.1.4. Brightness As Analog Sensor

network input config SCPTnvType nciNetworkType = SNVT_lux;

This input configuration property sets the brightness value into lux at the following network variables:

- nv1 – nvoAnalogSensorOut_x

Valid Range of Analog Sensor Output
0 … 65535 lx (Resolution 1.0 lx)
Default Value of Analog Sensor Output

0 lx

9.3.2. Max Send Time

```c
network input config SNVT_time_sec nciMaxSendTime;
```

This input configuration property sets the maximum period of time that can expire before the Object will automatically (cyclically) update one of the following network variables:

- `nv1` – `nvoAnalogSensorOut_x`

Valid Range

0 … 6553.5 seconds (only complete seconds will be processed)

Default Value

60.0 seconds.

SCPT Reference

SCPTmaxSendTime (49)
9.3.3. Min Send Time

network input config SNVT_time_sec nciMinSendTime;

This input configuration property sets the minimum period of time that must expire before the Object will automatically (cyclically) update one of the following network variables:
- nv1 – nvoAnalogSensorOut_x

Valid Range

0 6553.5 seconds (only complete seconds will be processed)

Default Value

10.0 seconds.

SCPT Reference

SCPTminSendTime (52)

9.3.4. Send On Analog Sensor Delta

SCPT Reference

SCPTsndDelta (27)

9.3.4.1. Send On Power Delta

network input config SNVT_power nciSndDelta;

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update the following network variables:
- nv1 – nvoAnalogSensorOut_x

Valid Range

0,0 6553,5W (Resolution 0.1W)

Default Value

10 W (Watt)

9.3.4.2. Send On Percent (CO2) Delta

network input config SNVT_lev_percent nciSndDelta;

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update the following network variables:
Functional Profile LON Sensor Interface

- **nv1 – nvoAnalogSensorOut_x**

Valid Range
-163.840 … 163.830 ppm (Resolution 0.005ppm)

Default Value
500 ppm (parts-per-million)

9.3.4.3. **Send On Temperatur Delta**

```
network input config SNVT_temp_p nciSndDelta;
```

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update the following network variables:

- **nv1 – nvoAnalogSensorOut_x**

Valid Range
-273.17 … 327.66°C (Resolution 0.01°C)

Default Value
1 °C (Degree Celsius)

9.3.4.4. **Send On Brightness Delta**

```
network input config SNVT_lux nciSndDelta;
```

This input configuration property sets the change in value that must result before the Object will automatically (cyclically) update the following network variables:

- **nv1 – nvoAnalogSensorOut_x**

Valid Range
0.0 … 65535 lx (Resolution 1.0 lx)

Default Value
10 lx (Lux)

9.3.5. **Analog Sensor Gain**

```
network input config SNVT_multidiv nciGain;
```

This input configuration property defines a linear sensor in combination with NV nciGain_[x]
in range of the following network variables:

- \(\text{nv1} - \text{nvoAnalogSensorOut}_x \)

Multiplier defines the measurement range between minimum, maximum and used resolution.

Divisor defines the resolution of the used A/D converter

Structure Definition

typedef struct {
 unsigned long multiplier;
 unsigned long divisor;
} SNVT_muldiv;

Valid Range

Multiplier = 0 \ldots 65535 (Resolution 1)
Divisor = 0 \ldots 255 (Resolution 1)

Default Value

Multiplier = 0
Divisor = 0
[0,0 defines characteristic curve of Temperature Sensor (SOMFY Ref. 9008044)]

SCPT Reference

SCPTgain (31)

E.g. you would like to use a brightness sensor (sun sensor) with a measurement range from 0lux to 100000lux and a resolution with 1lux
\(\Rightarrow \text{multiplier} = 100000 \)

But the maximum value of multiplier can only be 65535. Therefore a variable is needed which shows the same ratio between \textit{multiplier} and \textit{divisor}; e.g.

\[
\frac{\text{multiplier}}{\text{divisor}} = \frac{100000}{255} \approx \frac{65535}{167}
\]

\(\text{multiplier} \Rightarrow 65535 \)

\(\text{divisor} \Rightarrow 167 \)
9.3.6. Analog Sensor Offset

SCPT Reference

SCPToffset (26)

9.3.6.1. Analog Sensor Offset Power

```plaintext
network input config SNVT_power nciOffset;
```

This input configuration property defines a linear global radiation sensor in combination with NV nciGain_[x] in range of the following network variables:

- `nv1 – nvoAnalogSensorOut_x`

Valid Range

0.0 … 6553.5 W (Resolution 0.1W)

Default Value

0 W (Watt)

9.3.6.2. Analog Sensor Offset CO2

```plaintext
network input config SNVT_lev_percent nciOffset;
```

This input configuration property defines a linear CO2 sensor in combination with NV nciGain_[x] in range of the following network variables:

- `nv1 – nvoAnalogSensorOut_x`

Valid Range

-163.840 … 163.830 ppm (Resolution 0.005 ppm)
Default Value

0 ppm (parts-per-million)

9.3.6.3. **Analog Sensor Offset Temperature**

```c
network input config SNVT_temp_p nciOffset;
```

This input configuration property defines a linear temperature sensor in combination with NV nciGain_[x] in range of the following network variables:

- `nv1 – nvoAnalogSensorOut_x`

Valid Range

-273.17 … 327.66°C (Resolution 0.01°C)

Default Value

0°C (Degree Celsius)

9.3.6.4. **Analog Sensor Offset Brightness**

```c
network input config SNVT_lux nciOffset;
```

This input configuration property defines a linear brightness sensor in combination with NV nciGain_[x] in range of the following network variables:

- `nv1 – nvoAnalogSensorOut_x`

Valid Range

0 … 65535 lx (Resolution 1.0 lx)

Default Value

0 lx